
Complex Analysis: Final Exam

Aletta Jacobshal 01, Wednesday 31 January 2018, 18:30–21:30
Exam duration: 3 hours

Instructions — read carefully before starting
- Write very clearly your full name and student number at the top of each answer sheet and on the

envelope.
- Use the ruled paper for writing the answers and use the blank paper as scratch paper. After finishing put

your answers in the envelope. Do NOT seal the envelope! You must return the scratch paper and the
printed exam (separately from the envelope).

- Solutions should be complete and clearly present your reasoning. When you use known results (lem-
mas, theorems, formulas, etc.) you must explicitly state and verify the corresponding con-
ditions.

- 10 points are “free”. There are 6 questions and the maximum number of points is 100. The exam grade is
the total number of points divided by 10.

- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (15 points)

Evaluate

pv
∫ ∞
−∞

e−ix

x(x2 + 1) dx

using the calculus of residues.

Solution
By definition,

I = pv
∫ ∞
−∞

e−ix

x(x2 + 1)dx

= lim
R→∞
r→0+

(∫ −r
−R

e−ix

x(x2 + 1)dx+
∫ R

r

e−ix

x(x2 + 1)dx
)

= lim
R→∞
r→0+

IR,r.

To compute this integral we consider the closed contour

CR,r = γR,r + S−r + δR,r + C−R ,

shown below.
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γR,r δR,rS−r

C−R

i

−i

R−R

We have

IR,r =
∫ −r
−R

e−ix

x(x2 + 1)dx+
∫ R

r

e−ix

x(x2 + 1)dx

=
(∫

γR,r

+
∫
δR,r

)
f(z)dz,

where

f(z) = e−iz

z(z2 + 1) .

Therefore, ∫
CR,r

f(z)dz = IR,r +
∫
S−

r

f(z)dz +
∫
C−

R

f(z)dz.

For R > 1 and r < 1 we have∫
CR,r

f(z)dz = −2πiRes(−i) = πie−1,

where we used that

Res(−i) = lim
z→−i

(z + i) e−iz

z(z − i)(z + i) = lim
z→−i

e−iz

z(z − i) = −1
2e
−1,

and had to take a minus sign since CR,r is negatively oriented.

At the limit r → 0+ we have

lim
r→0+

∫
S+

r

f(z)dz = πiRes(0) = πi,

where we used that

Res(0) = lim
z→0

z
e−iz

z(z2 + 1) = lim
z→0

e−iz

z2 + 1 = 1.
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Moreover, since the degree of the numerator is 0 and the degree of the denominator is 3 ≥ 0+1,
and since the exponential is of the form e−iz and C−R lies in the lower half-plane we have from
Jordan’s lemma that

lim
R→∞

∫
C−

R

f(z)dz = 0.

Then taking the limits R→∞ and r → 0+ we get

πie−1 = I + πi,

giving

I = (e−1 − 1)πi.

Question 2 (15 points)

Consider the polynomial P (z) = z4 + ε(z − 1) where ε > 0. Show that if ε < r4

1 + r
then the

polynomial P has four zeros inside the circle |z| = r.

Solution
The functions f(z) = z4 and P (z) are analytic on and inside the circle |z| = r > 0.

The number of zeros of z4 inside this circle, counting multiplicity, is N0(f) = 4.

Moreover, on the circle |z| = r we have for h(z) = ε(z + 1) that

|h(z)| = |ε(z − 1)| ≤ ε(|z|+ 1) = ε(r + 1) < r4,

and

|f(z)| = |z4| = r4.

Therefore, on the circle |z| = r, we find

|h(z)| < r4 = |f(z)|.

These facts mean that we can apply Rouché’s theorem for P = f + h to get

N0(P ) = N0(f) = 4.

Question 3 (15 points)

Represent the function

f(z) = z − 1
z + 1 ,

(a) (8 points) as a Taylor series around 0 and give its radius of convergence;
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Solution
We have

z − 1
z + 1 = z − 1

1− (−z)
= (z − 1)(1 + (−z) + (−z)2 + (−z)3 + (−z)4 + · · · )
= (z − 1)(1− z + z2 − z3 + z4 + · · · )
= (z − z2 + z3 − z4 + z5 + · · · )− (1− z + z2 − z3 + z4 + · · · )
= −1 + 2z − 2z2 + 2z3 − 2z4 + · · · ,

where we used the geometric series which converges for |z| < 1. The only singularity of
(z − 1)/(z + 1) is at z = −1 which is at a distance |z| = 1 from 0. Therefore, the radius of
convergence is 1.

(b) (7 points) as a Laurent series in the domain |z| > 1.
Solution
Since |z| > 1, that is |1/z| < 1, we have

z − 1
z + 1 =

1− 1
z

1 + 1
z

=
(

1− 1
z

)(
1− 1

z
+ 1
z2 −

1
z3 + · · ·

)
.

Therefore,

z − 1
z + 1 =

(
1− 1

z
+ 1
z2 −

1
z3 + · · ·

)
−
(1
z
− 1
z2 + 1

z3 − · · ·
)

= 1− 2
z

+ 2
z2 −

2
z3 + 2

z4 −
2
z5 + · · · .

Question 4 (15 points)

At which points is the function

f(z) = (1 + i)x2 − (1− i)y2,

differentiable and at which points is it analytic? Compute the derivative of f(z) at the points
where it exists.

Solution
We first bring the function into the standard form u+ iv. We have

f(z) = (x2 − y2) + i(x2 + y2).

We check the partial derivatives, where we write u(x, y) = x2 − y2 and v(x, y) = x2 + y2. We
have

∂u

∂x
= 2x, ∂u

∂y
= −2y,

∂v

∂x
= 2x, ∂v

∂y
= 2y.
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All partial derivatives exist and are continuous for all x + iy ∈ C. Then the Cauchy-Riemann
equations give 2x = 2y and −2y = −2x, that is, the function is differentiable at z = x+ iy only
when x = y.
The function is nowhere analytic since the set where the function is differentiable contains no
open sets.
The derivative at the points z = x+ iy with x = y is given by

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= 2x+ 2ix = 2(1 + i)x.

Question 5 (15 points)

Consider the function

f(z) = ez

(z − 1)2 .

(a) (6 points) Determine the singularities of f(z) and their type (removable, pole, essential; if
pole, specify the order). Hint: You can compute the Laurent series of the function but there are
also other ways to determine the type of the singularity that do not require such computation.
Solution
The function has a singularity at z = 1. To determine the type of the singularity we may
work in one of the following ways.
Bounded limit. We notice that

lim
z→1

[
(z − 1)2 · ez

(z − 1)2

]
= e,

implying (since the limit is bounded) that z = 1 is a pole of order 2.
Characterization of poles. We notice that

f(z) = g(z)
(z − 1)2 ,

where g(z) is an analytic function in a neighborhood of 1 (it is actually entire) and g(1) =
e 6= 0. Therefore, z = 1 is a pole of order 2 for f .
Laurent series. The Taylor series for ez at z = 1 is

ez = e · ez−1

= e ·
(

1 + (z − 1) + 1
2(z − 1)2 + · · ·

)
= e+ e(z − 1) + e

2(z − 1)2 + · · · .

Therefore,

ez

(z − 1)2 = e

(z − 1)2 + e

z − 1 + e

2 + · · · ,

implying that z = 1 is a pole of order 2.
(b) (6 points) Show that f(z) does not have an antiderivative in C \ {1}. Hint: Compute the

integral of f along an appropriately chosen contour.
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Solution
If a function has an antiderivative in a domain D then its integral over any closed contour
in D must be 0. Let C be a positively oriented circle centered at 1. We compute, using
the generalized Cauchy formula, that∫

C

ez

(z − 1)2dz = 2πi(ez)′|z=1 = 2πie 6= 0.

Therefore, the function does not have an antiderivative.
Alternatively, using the Laurent series from subquestion (a), we can compute the integral
as ∫

C

ez

(z − 1)2dz = 2πiRes(1) = 2πie 6= 0.

(c) (3 points) Explain why f(z) has an antiderivative in C \ L where L = {x ∈ R : x ≥ 1}.
Solution
The set C \ L is simply connected, the given function is analytic in this set, and these
properties imply the existence of an anti-derivative since then all loop integrals of the
function in the given set vanish.

Question 6 (15 points)

Consider the function

u(x, y) = ex cos y,

(a) (7 points) Prove that the function is harmonic in R2.
Solution
We compute

∂u

∂x
= ex cos y, ∂u

∂y
= −ex sin y,

and

∂2u

∂x2 = ex cos y, ∂2u

∂y2 = −ex cos y.

The second order partial derivatives are continuous on R2 and

∂2u

∂x2 + ∂2u

∂y2 = ex cos y − ex cos y = 0.

Therefore, the function is harmonic.
(b) (8 points) Find a harmonic conjugate of u(x, y).

Solution
A harmonic conjugate of u satisfies the Cauchy-Riemann equations

∂v

∂x
= −∂u

∂y
= ex sin y, ∂v

∂y
= ∂u

∂x
= ex cos y.

Integrating the first equation gives

v(x, y) = ex sin y + g(y).
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Substituting into the second equation we find

ex cos y + g′(y) = ex cos y,

implying g(y) is constant. Choosing g(y) = 0 we get the conjugate harmonic

v(x, y) = ex sin y.
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