Complex Analysis: Final Exam

Aletta Jacobshal 01, Wednesday 31 January 2018, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number at the top of each answer sheet and on the envelope.
- Use the ruled paper for writing the answers and use the blank paper as scratch paper. After finishing put your answers in the envelope. Do NOT seal the envelope! You must return the scratch paper and the printed exam (separately from the envelope).
- Solutions should be complete and clearly present your reasoning. When you use known results (lemmas, theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are "free". There are 6 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (15 points)

Evaluate

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{e^{-i x}}{x\left(x^{2}+1\right)} \mathrm{d} x
$$

using the calculus of residues.

Solution

By definition,

$$
\begin{aligned}
I & =\mathrm{pv} \int_{-\infty}^{\infty} \frac{e^{-i x}}{x\left(x^{2}+1\right)} d x \\
& =\lim _{\substack{R \rightarrow \infty \\
r \rightarrow 0^{+}}}\left(\int_{-R}^{-r} \frac{e^{-i x}}{x\left(x^{2}+1\right)} d x+\int_{r}^{R} \frac{e^{-i x}}{x\left(x^{2}+1\right)} d x\right) \\
& =\lim _{\substack{R \rightarrow \infty \\
r \rightarrow 0^{+}}} I_{R, r} .
\end{aligned}
$$

To compute this integral we consider the closed contour

$$
C_{R, r}=\gamma_{R, r}+S_{r}^{-}+\delta_{R, r}+C_{R}^{-},
$$

shown below.

We have

$$
\begin{aligned}
I_{R, r} & =\int_{-R}^{-r} \frac{e^{-i x}}{x\left(x^{2}+1\right)} d x+\int_{r}^{R} \frac{e^{-i x}}{x\left(x^{2}+1\right)} d x \\
& =\left(\int_{\gamma_{R, r}}+\int_{\delta_{R, r}}\right) f(z) d z
\end{aligned}
$$

where

$$
f(z)=\frac{e^{-i z}}{z\left(z^{2}+1\right)}
$$

Therefore,

$$
\int_{C_{R, r}} f(z) d z=I_{R, r}+\int_{S_{r}^{-}} f(z) d z+\int_{C_{R}^{-}} f(z) d z
$$

For $R>1$ and $r<1$ we have

$$
\int_{C_{R, r}} f(z) d z=-2 \pi i \operatorname{Res}(-i)=\pi i e^{-1}
$$

where we used that

$$
\operatorname{Res}(-i)=\lim _{z \rightarrow-i}(z+i) \frac{e^{-i z}}{z(z-i)(z+i)}=\lim _{z \rightarrow-i} \frac{e^{-i z}}{z(z-i)}=-\frac{1}{2} e^{-1}
$$

and had to take a minus sign since $C_{R, r}$ is negatively oriented.
At the limit $r \rightarrow 0^{+}$we have

$$
\lim _{r \rightarrow 0^{+}} \int_{S_{r}^{+}} f(z) d z=\pi i \operatorname{Res}(0)=\pi i
$$

where we used that

$$
\operatorname{Res}(0)=\lim _{z \rightarrow 0} z \frac{e^{-i z}}{z\left(z^{2}+1\right)}=\lim _{z \rightarrow 0} \frac{e^{-i z}}{z^{2}+1}=1
$$

Moreover, since the degree of the numerator is 0 and the degree of the denominator is $3 \geq 0+1$, and since the exponential is of the form $e^{-i z}$ and C_{R}^{-}lies in the lower half-plane we have from Jordan's lemma that

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{-}} f(z) d z=0
$$

Then taking the limits $R \rightarrow \infty$ and $r \rightarrow 0^{+}$we get

$$
\pi i e^{-1}=I+\pi i
$$

giving

$$
I=\left(e^{-1}-1\right) \pi i .
$$

Question 2 (15 points)

Consider the polynomial $P(z)=z^{4}+\varepsilon(z-1)$ where $\varepsilon>0$. Show that if $\varepsilon<\frac{r^{4}}{1+r}$ then the polynomial P has four zeros inside the circle $|z|=r$.

Solution

The functions $f(z)=z^{4}$ and $P(z)$ are analytic on and inside the circle $|z|=r>0$.
The number of zeros of z^{4} inside this circle, counting multiplicity, is $N_{0}(f)=4$.
Moreover, on the circle $|z|=r$ we have for $h(z)=\varepsilon(z+1)$ that

$$
|h(z)|=|\varepsilon(z-1)| \leq \varepsilon(|z|+1)=\varepsilon(r+1)<r^{4},
$$

and

$$
|f(z)|=\left|z^{4}\right|=r^{4} .
$$

Therefore, on the circle $|z|=r$, we find

$$
|h(z)|<r^{4}=|f(z)| .
$$

These facts mean that we can apply Rouché's theorem for $P=f+h$ to get

$$
N_{0}(P)=N_{0}(f)=4 .
$$

Question 3 (15 points)

Represent the function

$$
f(z)=\frac{z-1}{z+1}
$$

(a) (8 points) as a Taylor series around 0 and give its radius of convergence;

Solution

We have

$$
\begin{aligned}
\frac{z-1}{z+1} & =\frac{z-1}{1-(-z)} \\
& =(z-1)\left(1+(-z)+(-z)^{2}+(-z)^{3}+(-z)^{4}+\cdots\right) \\
& =(z-1)\left(1-z+z^{2}-z^{3}+z^{4}+\cdots\right) \\
& =\left(z-z^{2}+z^{3}-z^{4}+z^{5}+\cdots\right)-\left(1-z+z^{2}-z^{3}+z^{4}+\cdots\right) \\
& =-1+2 z-2 z^{2}+2 z^{3}-2 z^{4}+\cdots,
\end{aligned}
$$

where we used the geometric series which converges for $|z|<1$. The only singularity of $(z-1) /(z+1)$ is at $z=-1$ which is at a distance $|z|=1$ from 0 . Therefore, the radius of convergence is 1 .
(b) (7 points) as a Laurent series in the domain $|z|>1$.

Solution

Since $|z|>1$, that is $|1 / z|<1$, we have

$$
\begin{aligned}
\frac{z-1}{z+1} & =\frac{1-\frac{1}{z}}{1+\frac{1}{z}} \\
& =\left(1-\frac{1}{z}\right)\left(1-\frac{1}{z}+\frac{1}{z^{2}}-\frac{1}{z^{3}}+\cdots\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{z-1}{z+1} & =\left(1-\frac{1}{z}+\frac{1}{z^{2}}-\frac{1}{z^{3}}+\cdots\right)-\left(\frac{1}{z}-\frac{1}{z^{2}}+\frac{1}{z^{3}}-\cdots\right) \\
& =1-\frac{2}{z}+\frac{2}{z^{2}}-\frac{2}{z^{3}}+\frac{2}{z^{4}}-\frac{2}{z^{5}}+\cdots
\end{aligned}
$$

Question 4 (15 points)

At which points is the function

$$
f(z)=(1+i) x^{2}-(1-i) y^{2},
$$

differentiable and at which points is it analytic? Compute the derivative of $f(z)$ at the points where it exists.

Solution

We first bring the function into the standard form $u+i v$. We have

$$
f(z)=\left(x^{2}-y^{2}\right)+i\left(x^{2}+y^{2}\right) .
$$

We check the partial derivatives, where we write $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=x^{2}+y^{2}$. We have

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=2 x, & \frac{\partial u}{\partial y}=-2 y, \\
\frac{\partial v}{\partial x}=2 x, & \frac{\partial v}{\partial y}=2 y .
\end{array}
$$

All partial derivatives exist and are continuous for all $x+i y \in \mathbb{C}$. Then the Cauchy-Riemann equations give $2 x=2 y$ and $-2 y=-2 x$, that is, the function is differentiable at $z=x+i y$ only when $x=y$.
The function is nowhere analytic since the set where the function is differentiable contains no open sets.
The derivative at the points $z=x+i y$ with $x=y$ is given by

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=2 x+2 i x=2(1+i) x .
$$

Question 5 (15 points)

Consider the function

$$
f(z)=\frac{e^{z}}{(z-1)^{2}} .
$$

(a) (6 points) Determine the singularities of $f(z)$ and their type (removable, pole, essential; if pole, specify the order). Hint: You can compute the Laurent series of the function but there are also other ways to determine the type of the singularity that do not require such computation.

Solution

The function has a singularity at $z=1$. To determine the type of the singularity we may work in one of the following ways.
Bounded limit. We notice that

$$
\lim _{z \rightarrow 1}\left[(z-1)^{2} \cdot \frac{e^{z}}{(z-1)^{2}}\right]=e,
$$

implying (since the limit is bounded) that $z=1$ is a pole of order 2 .
Characterization of poles. We notice that

$$
f(z)=\frac{g(z)}{(z-1)^{2}},
$$

where $g(z)$ is an analytic function in a neighborhood of 1 (it is actually entire) and $g(1)=$ $e \neq 0$. Therefore, $z=1$ is a pole of order 2 for f.
Laurent series. The Taylor series for e^{z} at $z=1$ is

$$
\begin{aligned}
e^{z} & =e \cdot e^{z-1} \\
& =e \cdot\left(1+(z-1)+\frac{1}{2}(z-1)^{2}+\cdots\right) \\
& =e+e(z-1)+\frac{e}{2}(z-1)^{2}+\cdots .
\end{aligned}
$$

Therefore,

$$
\frac{e^{z}}{(z-1)^{2}}=\frac{e}{(z-1)^{2}}+\frac{e}{z-1}+\frac{e}{2}+\cdots,
$$

implying that $z=1$ is a pole of order 2 .
(b) (6 points) Show that $f(z)$ does not have an antiderivative in $\mathbb{C} \backslash\{1\}$. Hint: Compute the integral of f along an appropriately chosen contour.

Solution

If a function has an antiderivative in a domain D then its integral over any closed contour in D must be 0 . Let C be a positively oriented circle centered at 1 . We compute, using the generalized Cauchy formula, that

$$
\int_{C} \frac{e^{z}}{(z-1)^{2}} d z=\left.2 \pi i\left(e^{z}\right)^{\prime}\right|_{z=1}=2 \pi i e \neq 0 .
$$

Therefore, the function does not have an antiderivative.
Alternatively, using the Laurent series from subquestion (a), we can compute the integral as

$$
\int_{C} \frac{e^{z}}{(z-1)^{2}} d z=2 \pi i \operatorname{Res}(1)=2 \pi i e \neq 0 .
$$

(c) (3 points) Explain why $f(z)$ has an antiderivative in $\mathbb{C} \backslash L$ where $L=\{x \in \mathbb{R}: x \geq 1\}$.

Solution

The set $\mathbb{C} \backslash L$ is simply connected, the given function is analytic in this set, and these properties imply the existence of an anti-derivative since then all loop integrals of the function in the given set vanish.

Question 6 (15 points)

Consider the function

$$
u(x, y)=e^{x} \cos y,
$$

(a) (7 points) Prove that the function is harmonic in \mathbb{R}^{2}.

Solution

We compute

$$
\frac{\partial u}{\partial x}=e^{x} \cos y, \quad \frac{\partial u}{\partial y}=-e^{x} \sin y
$$

and

$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{x} \cos y, \quad \frac{\partial^{2} u}{\partial y^{2}}=-e^{x} \cos y .
$$

The second order partial derivatives are continuous on \mathbb{R}^{2} and

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{x} \cos y-e^{x} \cos y=0 .
$$

Therefore, the function is harmonic.
(b) (8 points) Find a harmonic conjugate of $u(x, y)$.

Solution

A harmonic conjugate of u satisfies the Cauchy-Riemann equations

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=e^{x} \sin y, \quad \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=e^{x} \cos y .
$$

Integrating the first equation gives

$$
v(x, y)=e^{x} \sin y+g(y) .
$$

Substituting into the second equation we find

$$
e^{x} \cos y+g^{\prime}(y)=e^{x} \cos y,
$$

implying $g(y)$ is constant. Choosing $g(y)=0$ we get the conjugate harmonic

$$
v(x, y)=e^{x} \sin y .
$$

